Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-Vacuum Evaporation of n-CuIn3Se5 Photoabsorber Films for Hybrid PV Structures

Identifieur interne : 000081 ( Russie/Analysis ); précédent : 000080; suivant : 000082

High-Vacuum Evaporation of n-CuIn3Se5 Photoabsorber Films for Hybrid PV Structures

Auteurs : RBID : Pascal:12-0028955

Descripteurs français

English descriptors

Abstract

Thin films of Cu-In-Se (CISe) photoabsorber with an overall composition of CuIn3Se5 were deposited onto glass/indium tin oxide (ITO) substrates from a polycrystalline bulk CuIn3Se5 source using the high-vacuum evaporation technique. Thermal conditions for the substrates during the evaporation process and the subsequent annealing in vacuum were selected to prepare polycrystalline n-CuIn3Se5 photoabsorber layers for use in hybrid photovoltaic structures based on an inorganic photoabsorber and conductive polymer functional layers. The CISe layers were deposited at a substrate temperature of 200°C and were annealed at temperatures from 300°C to 500°C in vacuum. Part of the as-deposited CISe was annealed twice, in argon and in vacuum at 500°C. These layers exhibited high photosensitivity and photoconductivity when illuminated with white light at an intensity of 100 mW/cm2. The results showed that the chalcopyrite structure of the prepared CISe photoabsorber films adhered well to the glass/ITO substrate. The average value of charge carrier concentration and the profile of charge carrier concentration in the annealed CISe photoabsorber layer were calculated using impedance spectroscopy.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0028955

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High-Vacuum Evaporation of n-CuIn
<sub>3</sub>
Se
<sub>5</sub>
Photoabsorber Films for Hybrid PV Structures</title>
<author>
<name sortKey="Adhikari, N" uniqKey="Adhikari N">N. Adhikari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bereznev, S" uniqKey="Bereznev S">S. Bereznev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laes, K" uniqKey="Laes K">K. Laes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kois, J" uniqKey="Kois J">J. Kois</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Volobujeva, O" uniqKey="Volobujeva O">O. Volobujeva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raadik, T" uniqKey="Raadik T">T. Raadik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Traksmaa, R" uniqKey="Traksmaa R">R. Traksmaa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Materials Research Center, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tverjanovich, A" uniqKey="Tverjanovich A">A. Tverjanovich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemistry, Saint-Petersburg State University, Staryi Petergof, Ulyanovskaya 5</s1>
<s2>198504 Saint-Petersburg</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>198504 Saint-Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Opik, A" uniqKey="Opik A">A. Öpik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellikov, E" uniqKey="Mellikov E">E. Mellikov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Estonie</country>
<wicri:noRegion>19086 Tallinn</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0028955</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0028955 INIST</idno>
<idno type="RBID">Pascal:12-0028955</idno>
<idno type="wicri:Area/Main/Corpus">002458</idno>
<idno type="wicri:Area/Main/Repository">002D41</idno>
<idno type="wicri:Area/Russie/Extraction">000081</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier density</term>
<term>Chalcopyrite structure</term>
<term>Conducting polymers</term>
<term>Copper</term>
<term>Copper Indium Selenides Mixed</term>
<term>High vacuum</term>
<term>Hybrid material</term>
<term>Illumination</term>
<term>Indium oxide</term>
<term>Microstructure</term>
<term>Photoconductivity</term>
<term>Photosensitivity</term>
<term>Photovoltaic cell</term>
<term>Photovoltaic effects</term>
<term>Polycrystals</term>
<term>Substrat temperature</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Vacuum annealing</term>
<term>Vacuum deposition</term>
<term>Vacuum evaporation</term>
<term>Vacuum techniques</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Vide poussé</term>
<term>Evaporation sous vide</term>
<term>Dépôt sous vide</term>
<term>Microstructure</term>
<term>Matériau hybride</term>
<term>Couche mince</term>
<term>Technique vide</term>
<term>Recuit sous vide</term>
<term>Dispositif photovoltaïque</term>
<term>Effet photovoltaïque</term>
<term>Polymère conducteur</term>
<term>Température substrat</term>
<term>Photosensibilité</term>
<term>Photoconductivité</term>
<term>Cuivre Indium Séléniure Mixte</term>
<term>Cuivre</term>
<term>Oxyde d'étain</term>
<term>Oxyde d'indium</term>
<term>Polycristal</term>
<term>Eclairement</term>
<term>Structure chalcopyrite</term>
<term>Densité porteur charge</term>
<term>Substrat verre</term>
<term>Substrat oxyde d'indium et de zinc</term>
<term>Substrat InSnO</term>
<term>8115E</term>
<term>8460J</term>
<term>7240</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thin films of Cu-In-Se (CISe) photoabsorber with an overall composition of CuIn
<sub>3</sub>
Se
<sub>5</sub>
were deposited onto glass/indium tin oxide (ITO) substrates from a polycrystalline bulk CuIn
<sub>3</sub>
Se
<sub>5</sub>
source using the high-vacuum evaporation technique. Thermal conditions for the substrates during the evaporation process and the subsequent annealing in vacuum were selected to prepare polycrystalline n-CuIn
<sub>3</sub>
Se
<sub>5</sub>
photoabsorber layers for use in hybrid photovoltaic structures based on an inorganic photoabsorber and conductive polymer functional layers. The CISe layers were deposited at a substrate temperature of 200°C and were annealed at temperatures from 300°C to 500°C in vacuum. Part of the as-deposited CISe was annealed twice, in argon and in vacuum at 500°C. These layers exhibited high photosensitivity and photoconductivity when illuminated with white light at an intensity of 100 mW/cm
<sup>2</sup>
. The results showed that the chalcopyrite structure of the prepared CISe photoabsorber films adhered well to the glass/ITO substrate. The average value of charge carrier concentration and the profile of charge carrier concentration in the annealed CISe photoabsorber layer were calculated using impedance spectroscopy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>40</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High-Vacuum Evaporation of n-CuIn
<sub>3</sub>
Se
<sub>5</sub>
Photoabsorber Films for Hybrid PV Structures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ADHIKARI (N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BEREZNEV (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAES (K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOIS (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VOLOBUJEVA (O.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RAADIK (T.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>TRAKSMAA (R.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TVERJANOVICH (A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ÖPIK (A.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>MELLIKOV (E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Materials Research Center, Tallinn University of Technology, Ehitajate tee 5</s1>
<s2>19086 Tallinn</s2>
<s3>EST</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemistry, Saint-Petersburg State University, Staryi Petergof, Ulyanovskaya 5</s1>
<s2>198504 Saint-Petersburg</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>2374-2381</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000505672630070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0028955</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thin films of Cu-In-Se (CISe) photoabsorber with an overall composition of CuIn
<sub>3</sub>
Se
<sub>5</sub>
were deposited onto glass/indium tin oxide (ITO) substrates from a polycrystalline bulk CuIn
<sub>3</sub>
Se
<sub>5</sub>
source using the high-vacuum evaporation technique. Thermal conditions for the substrates during the evaporation process and the subsequent annealing in vacuum were selected to prepare polycrystalline n-CuIn
<sub>3</sub>
Se
<sub>5</sub>
photoabsorber layers for use in hybrid photovoltaic structures based on an inorganic photoabsorber and conductive polymer functional layers. The CISe layers were deposited at a substrate temperature of 200°C and were annealed at temperatures from 300°C to 500°C in vacuum. Part of the as-deposited CISe was annealed twice, in argon and in vacuum at 500°C. These layers exhibited high photosensitivity and photoconductivity when illuminated with white light at an intensity of 100 mW/cm
<sup>2</sup>
. The results showed that the chalcopyrite structure of the prepared CISe photoabsorber films adhered well to the glass/ITO substrate. The average value of charge carrier concentration and the profile of charge carrier concentration in the annealed CISe photoabsorber layer were calculated using impedance spectroscopy.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15E</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70B40</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Vide poussé</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>High vacuum</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Evaporation sous vide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Vacuum evaporation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Vacuum deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Matériau hybride</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Hybrid material</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Material híbrido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Technique vide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Vacuum techniques</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Recuit sous vide</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Vacuum annealing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Recocido en el vacío</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet photovoltaïque</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Photovoltaic effects</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Polymère conducteur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Conducting polymers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Température substrat</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Substrat temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Temperatura substrato</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Photosensibilité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Photosensitivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Cuivre Indium Séléniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Copper Indium Selenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Polycristal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Polycrystals</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Structure chalcopyrite</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Chalcopyrite structure</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Estructura calcopirita</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Substrat verre</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Substrat oxyde d'indium et de zinc</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat InSnO</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8115E</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>7240</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>016</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000081 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000081 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0028955
   |texte=   High-Vacuum Evaporation of n-CuIn3Se5 Photoabsorber Films for Hybrid PV Structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024